Pointwise extensions of GSOS-defined operations
نویسندگان
چکیده
Final coalgebras capture system behaviours such as streams, infinite trees and processes. Algebraic operations on elements of a final coalgebra can be defined by distributive laws (of a syntax Σ functor over a behaviour functor F ). Such distributive laws correspond to abstract specification formats. One such format is a generalization of the GSOS rules known from structural operational semantics of processes. We show that given an abstract GSOS specification ρ that defines operations σ on a final F -coalgebra, we can systematically construct a GSOS specification ρ that defines the pointwise extension σ of σ on a final F-coalgebra. The construction relies on adding a family of auxiliary “buffer” operations to the syntax. These buffer operations depend only on A, and so the construction is uniform for all σ and F .
منابع مشابه
Proving the validity of equations in GSOS languages using rule-matching bisimilarity
This paper presents a bisimulation-based method for establishing the soundness of equations between terms constructed using operations whose semantics is specified by rules in the GSOS format of Bloom, Istrail and Meyer. The method is inspired by de Simone’s FH-bisimilarity and uses transition rules as schematic transitions in a bisimulation-like relation between open terms. The soundness of th...
متن کاملAbstract Gsos Rules and a Compositional Treatment of Recursive Definitions
GSOS RULES AND A COMPOSITIONAL TREATMENT OF RECURSIVE DEFINITIONS STEFAN MILIUS, LAWRENCE S. MOSS, AND DANIEL SCHWENCKE Institut für Theoretische Informatik, Technische Universität Braunschweig, Germany e-mail address: [email protected] Department of Mathematics, Indiana University, Bloomington, IN, USA e-mail address: [email protected] Institut für Theoretische Informatik, Technische Univ...
متن کاملA Bisimulation-based Method for Proving the Validity of Equations in GSOS Languages
This paper presents a bisimulation-based method for establishing the soundness of equations between terms constructed using operations whose semantics is specified by rules in the GSOS format of Bloom, Istrail and Meyer. The method is inspired by de Simone’s FH-bisimilarity and uses transition rules as schematic transitions in a bisimulation-like relation between open terms. The soundness of th...
متن کاملAbstract GSOS Rules and a Modular Treatment of Recursive Definitions
GSOS RULES AND A MODULAR TREATMENT OF RECURSIVE DEFINITIONS STEFAN MILIUS , LAWRENCE S. MOSS , AND DANIEL SCHWENCKE c a Lehrstuhl für Theoretische Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany e-mail address: [email protected] b Department of Mathematics, Indiana University, Bloomington, IN, USA e-mail address: [email protected] c Institute of Transportation System...
متن کاملExact calculations of extended logical operations on fuzzy truth values
In this paper we propose computationally simple, pointwise formulas for extended t-norms and t-conorms on fuzzy truth values. The complex convolutions of the extended operations are shown to be equivalent to simple pointwise expressions for several special cases. Linear fuzzy truth values are defined and it is shown that the extended Łukasiewicz operations preserve linearity. Since linear fuzzy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical Structures in Computer Science
دوره 21 شماره
صفحات -
تاریخ انتشار 2011